Comments by Rafael Repullo on

Bank Competition, Risk, and Asset Allocations: New Theory and New Evidence

John Boyd, Gianni de Nicolò, and Abu Jalal

Banco de Portugal Conference on Bank Competition Porto, 6-7 July 2007

Introduction

Issues

- What is the effect of competition on the risk of bank failure?
- Is there a trade-off between competition and bank stability?

Two views

- Conventional view: competition is bad
- Boyd and De Nicolò (JF 2005): competition is good

 \rightarrow Lower probability of bank failure

 \rightarrow No trade-off

Introduction

- Key assumption of the extant literature
 - \rightarrow Banks invest in market assets with exogenous returns
- New assumption in Boyd and De Nicolò

 \rightarrow Banks invest in loans

- \rightarrow Risk of these loans is increasing in the loan rate
- Hence high loan rates (due to market power)

 \rightarrow Higher risk of loan default

 \rightarrow Higher risk of bank failure

Introduction

This paper

- Adds asset with fixed return (bond)
- New theoretical results on portfolio allocations
- New empirical tests of model predictions

Main results

• Increase in the number of banks

 \rightarrow Reduces probability of bank failure

- \rightarrow Increases proportion of assets invested in loans
- Results are supported by the empirical evidence

Setup

- *n* banks that compete à la Cournot for deposits and loans
- Inverse supply function of insured deposits

$$r_D(d)$$
, with $d = \sum_{i=1}^n d_i$ and $r'_D > 0$

• Inverse demand function for loans

$$r_L(l)$$
, with $l = \sum_{i=1}^n l_i$ and $r'_L < 0$

• Probability of default

 $p(r_L)$, with p' > 0

- Loan defaults are perfectly correlated
- Bond rate: r_B

Setup

• Objective function of bank *i*

 $[1 - p(r_L(l))][(1 + r_L(l))l_i + (1 + r_B)b_i - (1 + r_D(d))d_i] + p(r_L(l))\max\{(1 + r_B)b_i - (1 + r_D(d))d_i, 0\}$

subject to $l_i + b_i = d_i$

• Substituting constraint into objective function

 $[1 - p(r_L(l))][(r_L(l) - r_B)l_i + (r_B - r_D(d))d_i] + p(r_L(l))\max\{-(1 + r_B)l_i + (r_B - r_D(d))d_i, 0\}$

Main comments

Comment 1

• There may be some problems with the theoretical results

Comment 2

• What would happen with risky market assets?

Comment 3

• What would happen with imperfect correlation in defaults?

 \rightarrow Martinez-Miera and Repullo (2007)

Comment 1: A counterexample

• Linear parameterization of model

 $r_D(d) = d/100$ $r_L(l) = (50 - l)/100$ $p(r_L) = r_L(l)$

- Two bond rates: $r_B = 30\%$ and $r_B = 45\%$
- Not a calibration exercise!

Results for $r_B = 30\%$

Results for $r_B = 30\%$

Results for $r_B = 30\%$

Results for $r_B = 45\%$

Results for $r_B = 45\%$

Results for $r_B = 45\%$

Comment 1: Summing up

Increase in the number of banks:

- May <u>not</u> increase proportion of assets invested in loans
 → Because banks prefer to invest in bonds
 May <u>not</u> reduce the probability of bank failure
 - \rightarrow Because of higher risk-shifting incentives

Comment 2: Other risky assets

• Why assume that the alternative asset is safe?

 \rightarrow Banks also invest risky market assets

- Combine BDN with HMS (or Allen-Gale)
- Conjecture: effect of competition would be ambiguous

Comment 3: Imperfect default correlation

Single risk factor model

• Loan defaults are driven by

– Systematic risk factor (with weight ρ)

– Idiosyncratic risk factor (with weight $1 - \rho$)

- Systematic risk factor explains correlation in defaults
- With $\rho = 0$ we have independent defaults
- With $\rho = 1$ we have case in Boyd and De Nicolò (2005)
- In Martinez-Miera and Repullo (2007) we assume $0 < \rho < 1$

→ Model underlying Basel II capital requirements

Comment 3: Imperfect default correlation

- Two effects of market power:
 - \rightarrow *Risk-shifting effect*: Higher risk of loan default (as in BDN)
 - → *Margin effect*: Higher payments on non-defaulting loans
- Ambiguous effect on risk of bank failure
- Results in Martinez-Miera and Repullo (2007)
 - U-shaped relationship between competition and bank risk
 - Obtains for static and dynamic model (with charter values)
 - Obtains for Cournot and Salop model of competition

Numerical results: static model

Numerical results: dynamic model

Number of banks that minimize prob. failure

Comments on empirical results

• Weak proxy of bank risk: Z-score = $(K/A + ROA)/\sigma(ROA)$

 \rightarrow Large measurement error in $\sigma(ROA)$

- Model does not allow for volatility in bank returns
- Model does not incorporate banks' capital decision
 → Cannot say that "results are fully consistent with the
 predictions of theory"
- Include quadratic term in HHI to test U-shaped relationship

Final remarks

• Effect of competition on prob. of bank failure is ambiguous

 \rightarrow Two opposite effects: risk-shifting (+) and margin (-)

• This is essentially an empirical issue

 \rightarrow Need more empirical work!